
MonetDB, A Novel Spatial Column-Store DBMS

Maarten Vermeij 1 , Wilko Quak1 , Martin Kersten , Niels Nes 2 2

1 TUDelft, OTB, section GIS-technology, The Netherlands

c.w.quak@tudelft.nlc.w.quak@tudelft.nl; m.j.vermeij@tudelft.nlm.j.vermeij@tudelft.nl
2 CWI Amsterdam, The Netherlands

Niels.Nes@cwi.nlNiels.Nes@cwi.nl; Martin.Kersten@cwi.nlMartin.Kersten@cwi.nl

Abstract
Column-store database engines are a promising track in database research to handle data

warehouses. In this paper we describe our experiences in extending the open-source database
management system MonetDB with geo-spatial functionality. The approach taken is to leverage the
existing geo-spatial software library GEOS through the extensibility features of this DBMS. The
result is a high-performance solution using a software stack that enables future research and
development improvements in many directions. In our paper we first give an overview of the
MonetDB architecture then we describe how this architecture is beneficial for the handling of
spatial data.

1. Introduction

Recent years have seen a flurry of activities in the database research arena, aimed at improved
processing against large data warehouses. The trend is to focus on analysis applications, which call
for a different organization of the database storage layers. In particular, the orientation on columns
as the prime storage element has become fashionable.

One high-performance open-source column-store is MonetDB. It has been successfully deployed
in application areas ranging from data mining, OLAP, information retrieval and multimedia data
management. In many warehouse applications, MonetDB achieves a 10-fold raw speed
improvement for SQL and XQuery over the competitor RDBMSs (see: monetdb.cwi.nl). MonetDB
achieves its goal by innovations at all layers of the DBMS, e.g. the column-store approach, a
storage model based on vertical fragmentation, a modern CPU-tuned query execution architecture,
automatic and self-tuning indexes, run-time query optimization, and a modular software
architecture.

We embarked on a project to unleash MonetDB's performance also in the area of spatial
applications. For this we used the existing open source GEOS libraries (http://trac.osgeo.org/geos/),
also used by PostGIS, and make it available via the MonetDB/SQL engine. Using an already
existing library speeds up the integration process significantly. There was no need to re-invent and
re-implement all spatial functions.

Proceedings of the academic track of the 2008 Free and Open Source Software for Geospatial (FOSS4G) Conference,

incorporating the GISSA 2008 Conference
29 September - 3 October 2008, Cape Town, South Africa

ISBN 978-0-620-42117-1

In this paper we describe how MonetDB performs as a spatial engine and how the design
characteristics of MonetDB helped to solve problems that are hard to crack in other spatial DBMS
systems. The main characteristics of our spatial-enhanced version of MonetDB are:

• The vertical fragmentation (column-store approach) used by MonetDB to store its data is
very beneficial for spatial query processing. The prime reason is that with spatial filter
techniques only a fraction of the geometries of a table are really needed in most cases. In
a traditional tuple based storage model, the geometry data is still in the way. Due to the
size of the geometry only a few tuples can be stored in a disk-block, this means that
almost each tuple accessed in a query results in a disk-block access. Vertical
fragmentation ensures that the non-needed attributes are not in the way.

• Spatial queries are often very hard to deal with. Often the query optimizer needs to be
helped by the pragmas or hints to the SQL optimizer. We will indicate how to leverage
the self-organizing capabilities of MonetDB software infrastructure for spatial data.

• In the spatial domain XML (and specifically GML) is becoming more and more used.
However, querying a large XML document is still cumbersome. MonetDB has a proved
performance track record as a XQuery engine. Combining the efficient XQuery
functionality of MonetDB with the spatial module leads to and an powerful GML
processing solution.

In the spatial DBMS field the last years focus has been on integrating support for spatial data
inside existing commercial and open-source products with Oracle and PostgreSQL/PostGIS as
forerunners and recently Microsoft added spatial support to SQLServer. A nice research article on
spatial DBMSs dates from 1997 [?].

The remainder of the paper is organised as follows. In Section 2 we sketch the MonetDB
architecture. In Section 3 we describe how the characteristics of MonetDB help in making an
efficient spatial DBMS engine. Finally in Section 4 we give a short overview of our future plans
with MonetDB spatial.

2. MonetDB Architecture overview

In this section we briefly introduce the MonetDB server and SQL compiler. A growing class of
database engines are geared at exploitation of a column-oriented store [?, ?]. In this field, relational
tables are broken vertically with each column representing a single relational attribute. Almost as if
each column is stored in a separate table or even ordinary array, but then with an implementation
that is geared to optimally exploit this structure. This approach leads to a much simplified system
architecture and opens many routes to increase performance. The benefits come from a better
streamlining of the data flow from disk through memory into the CPU caches. Column-oriented
data stores are particularly beneficial in data warehousing and data mining applications, which are
often used on scientific databases. The primary reason is that most applications do not need the
hundreds of columns of a relational table with scientific measurement data, but merely require
looking at just a few at a time for statistical analysis. The immediate benefit of the column-store
approach is that only data relevant for processing is fetched from disk.

MonetDB is a fully functional column-store developed over a decade at CWI. It consists of a
two-layered architecture of a database server and a number of front-ends. Currently available front-
ends provide an SQL and an XQuery interface to the database server. The server is addressed in a
proprietary language, called MonetDB Assembly Language(MAL). MAL is a relational algebra
language that supports a large collection of relational primitives, functions, and easy linkage with
user defined functions. The operators work on the basis that each produces a materialized result.
Moreover, the operators encode runtime optimization decisions, which in other systems are part of a
cost-based optimizer. For example, the MAL join operator makes a runtime decision about the
utilization of additional indices, exploitation of sort-orders, and data type specific opportunities. It
results in encapsulation of several hundreds of highly tuned join algorithms.

This approach significantly simplifies the front-end compilers. The front-end parses SQL queries
and compiles them into semi-optimized MAL plans which exploit the SQL language and schema
semantics. It should (and can) only focus on the volume reductions achievable. The front-end
compiler also selects MAL optimizer components to be activated, e.g. common expression
elimination, dead code removal, parallelism, etc. In this way a three-tier optimizer architecture is
achieved with a clear division of tasks. The bottom layer focuses on operational optimization using
the actual state of the machine. The top layer is geared at exploiting the schema semantics, and the
middle layer is geared at tactical decisions. It is the place to decide on e.g. (pre-)caching results,
scheduling, etc. For more information we refer to the MonetDB documentation at
http://monetdb.cwi.nl/.

3. MonetDB design principles and impact on spatial data

In this Section we describe how the design principles of MonetDB are of great benefit for the
handling of spatial data. The relevant principles are introduced in the sections below:

3.1 Column-Oriented Data Storage

Vertical fragmentation or column-oriented data storage is beneficial for spatial query processing.
In a traditional tuple based storage model, where all data for a tuple is stored physically together,
the geometry data is still in the way. The size of the geometry implies that only a few tuples can be
stored in each disk-block. This means that almost every tuple in a query answer results in a disk-
block access, even if the geometry is not needed for answering the query. Vertical fragmentation
ensures that the non-needed geometries are not in the way.

Filtering can be further improved readily by storing multiple approximations in the same
column. In terms of a traditional relation model, each spatial attribute comes with several
approximations to ease filtering.

Some geometry types, for example polygons can become very complex. Complex geometries
require both a larger storage size as well as a more computing time in many analyses. To speed up
e.g. filtering of polygon geometries within a table, the filter-refine schema as described in [?] can be
used. This system uses approximate geometries such as the minimum bounding rectangle, minimum
bounding circle and convex hull to allow a fast reduction in the number of candidate geometries in a
spatial query(conservative approximation). Besides this minimum outside bounding approximations

to reject geometries, it is also possible to use maximum enclosed geometries, e.g. maximum
enclosed circle and maximum enclosed rectangle, to quickly identify definite positives without
calculations on the actual geometries (progressive approximations). These approximate geometries
could be stored in hidden tables that are automatically used by MonetDB when performing spatial
queries. Since columns are stored independently, having more columns does not adversely affect
performance on queries that use only the original columns. This set-up behaves more or less like an
index in a standard (row-based) relational database.

Another benefit of the column-store approach is that the storage of each column can be
optimized towards the access characteristics of the specific column type without side-effects on the
performance of other columns. For example, specific access structures are easier to realize, and
(run-length, front-, rear-) compression schemes can be more readily applied.

The implementation of the spatial algorithms does not have to worry about circumstantial data
items and access profiles. This also opens the door to future enhancements of the support for spatial
types in MonetDB, such as specific compression schemas for spatial columns [?].

The column-store also comes at a cost. Many joins are needed to reproduce the original table.
Although this join operation is highly optimized in MonetDB, it is the moment where you pay for
the vertical fragmentation. Despite the cost, there are several arguments for the introduction of
vertical decomposition:

• Databases tend to grow wider and get tables with more and more columns. In most cases
only a few of these columns are used in the where-clause of a query and the rest is just
dead weight in the selection of records. Column-store DBMSs a very good at querying
tables with lots of columns since only the columns relevant for the query need to be
accessed.

• DBMSs continue grow in size, but the amount of information a human can process does
not change much. Since the display of all columns for browsing is one of the few reasons
to retrieve all columns (the select * operation) the relative cost of the final join will be
smaller.

3.2 Optimizing Queries With Spatial Data

Over the years several attempts have been made to create a retargetable or modular query
optimizer. The more promising ones are based on term rewriting, which provides a setting to reason
on its correctness[?]. It is, however, also known that many rewrites depend both on the inherent
semantics of the query language and circumstantial information, such as availability of indices,
algorithms and transaction protection level. In these cases, the rule rewriter quickly becomes
difficult to track and keep consistent.

A query optimizer is often a large and complex piece of code, which enumerates alternative
evaluation plans from which 'the best' plan is selected for evaluation. Limited progress has been
made so far to decompose the optimizer into (orthogonal) components, because it is a common
believe in research that a holistic view on the problem is a prerequisite to finding the best plan.
PostgreSQL supports steering the optimizer using global variables. Conversely, commercial

optimizers often use a cost-model driven approach, which explores part of the space using a limited
number rewriting rules. More recently, database engines rely on workload analysis using query logs
to learn.

The MonetDB software stack opens up this box of Pandora, by providing an easy scheme to
debug, deploy, and trace optimizers geared at well-defined tasks. Our hypothesis is that query
optimization should be realized with a collection of code transformers, each targeted at a specific
task, and dynamically activated.

The MonetDB distribution comes with a large collection of optimizer modules1 They are
developed up to the point that they could be used in production code or to experiment with the
optimizer software infrastructure. They are highly targeted to a particular problem. Figure 0 shows
the modules forming the optimizer pipeline for SQL queries.

Table 1. The MonetDB/SQL optimizer pipeline

 inline remap evaluate
costModel coercions empty set
access modes aliases merge tables
common terms accumulators
deadcode reduce garbage

collector
dataflow multiplex

The effectiveness of the optimizer toolkit is illustrated by its code size. Each well-defined

optimizer task just takes a few pages of C-code, relying on a small library of generic support
routines to analyse and manipulate the MAL internal representation. To summarize the generic
functionality:

• A critical property for optimization is to easily recognize operators with and without side-
effects. A large collection of such harmful operators can be recognized by their void type,
for any operator that does not produce a result need not be executed. A void returning
operator thus should have effect elsewhere. Other operators are easily recognized by the
module name or an explicit property specified with the function definition.

• All variables have a lifespan, denoted by properties beginLifespan, i.e. the statement
where it receives its first value, and endLifespan, i.e. the statement where it is last used. If
its last use lies within a BARRIER block, then its endLifespan is aligned with the block
exit.

• In many optimization rules, the data flow dependency between statements is of crucial
importance. The MAL language provides a multi-source, multi-sink dataflow network.
Optimizers typically extract part of the workflow and use the language properties to
enumerate semantic equivalent solutions, which under a given cost model turns out to
result in better performance.

• Some statements are independent of the execution context. In particular, expressions over

1

 See http://monetdb.cwi.nl/projects/monetdb/MonetDB/Documentation/The-MAL-Optimizer.html for a complete overview.

functions without side-effect and constant arguments can be evaluated before the
program block is considered further.

• A major task for an optimizer is to select statement (sequences) that can and should be
replaced with cheaper ones. The cost model underlying this decision depends on the
processing stage and the overall objective.

This setup provides an excellent stepping stone for developing spatial oriented optimizers. They
can be tested in isolation and their interference with other optimizers is easily determined using the
debugging tools provided. We refer to the documentation and code base for more details.

3.3 Linkage Between XML and Spatial

One of the strong points of MonetDB is its capability to store XML [?]. Currently the linkage
between SQL/XML integration is under development, therefore the example in this paragraph does
not work in the current version. However, all components described have been proven in practice.

Expressing a spatial where clause as an XQuery expression on a GML geometry is not very
efficient. However, the integration of the spatial datatypes in MonetDB with the XML types makes
elegant and efficient solutions possible. The following sample script demonstrates the loading of a
geometry attribute from a GML file.

COPY INTO buildings(XMLgeometry) FROM '/tmp/buildings.gml' DELIMITER
'buildings(geometry)'; ALTER TABLE buildings ADD COLUMN geometry polygon; UPDATE
buildings SET geometry = PolygonFromGML(XMLgeometry);

If the GML file contains a FeatureCollection of building objects, the first instruction copies the
GML document into MonetDB and breaks it into pieces. This shredding can be done in many
different ways depending on the application. Here we perform a top-down parse of the GML
document where the XML-subtree geometry is extracted. Now we add a spatial column to the
building table and convert the XML geometry object into a geometry. We can use this geometry
attribute for efficiently accessing the spatial component of the data in combination with XPath for
the rest of the document.

4. Concluding Remarks and Future Plans

In this paper we have shown that we have successfully extended MonetDB with spatial
functionality. The result is an exciting product that has a lot of potential for further research. Some
of the ideas we have for the future are:

• Finalize the integration between the spatial model and the XML storage.
• Implement a host of approximations on polygons to fully exploit the filter-refine process.
• Improve query optimization on mixed spatial/non-spatial queries.
• Write specific compression schemes for spatial columns to enable compact storage of

spatial columns.
• Create plug-ins for several platforms that handle spatial data (MapServer, ...)

References
Becker Güting1992DBLP:journals/tods/BeckerG92 Becker, L. Güting, R. H. 1992 , `Rule-based

optimization and query processing in an extensible geometric database system.', ACM Trans. Database Syst.
17(2), 247--303.

Boncz Kersten1999boncz99mil Boncz, P. A. Kersten, M. L. 1999 , `MIL primitives for querying a
fragmented world', VLDB Journal: Very Large Data Bases 8(2), 101--119.

citeseer.ist.psu.edu/boncz99mil.html
[Boncz et al.]Boncz, Grust, van Keulen, Manegold, Rittinger Teubner2006boncz2006 Boncz, P., Grust,

T., van Keulen, M., Manegold, S., Rittinger, J. Teubner, J. 2006 , MonetDB/XQuery: a fast XQuery
processor powered by a relational engine, in `SIGMOD '06: Proceedings of the 2006 ACM SIGMOD
international conference on Management of data', ACM, New York, NY, USA, pp. 479--490.

[Isenburg et al.]Isenburg, Lindstrom Snoeyink2005Isenburg05losslesscompression Isenburg, M.,
Lindstrom, P. Snoeyink, J. 2005 , `Lossless compression of predicted floating-point geometry', JCAD -
Journal for Computer-Aided Design 37, 2005.

[Kriegel et al.]Kriegel, Brinkhoff Schneider1993kriegel93efficient Kriegel, H.-P., Brinkhoff, T.
Schneider, R. 1993 , `Efficient spatial query processing in geographic database systems', Data Engineering
Bulletin 16(3), 10--15.

citeseer.ist.psu.edu/kriegel93efficient.html
[Patel et al.]Patel, Yu, Kabra, Tufte, Nag, Burger, Hall, Ramasamy, Lueder, Ellmann, Kupsch, Guo,

Larson, Witt Naughton1997Patel1997 Patel, J., Yu, J., Kabra, N., Tufte, K., Nag, B., Burger, J., Hall, N.,
Ramasamy, K., Lueder, R., Ellmann, C., Kupsch, J., Guo, S., Larson, J., Witt, D. D. Naughton, J. 1997 ,
`Building a scaleable geo-spatial DBMS: technology, implementation, and evaluation', SIGMOD Rec. 26(2),
336--347.

[Stonebraker et al.]Stonebraker, Abadi, Batkin, Chen, Cherniack, Ferreira, Lau, Lin, Madden, Oâ€™Neil,
Oâ€™Neil, Rasin, Tran Zdoni2005Stonebraker2005 Stonebraker, M., Abadi, D. J., Batkin, A., Chen, X.,
Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., Oâ€™Neil, E., Oâ€™Neil, P., Rasin, A., Tran, N.
Zdoni, S. 2005 , C-store: A column-oriented DBMS, in `Proceedings of the 31st VLDB Conference', pp.
553--564.

http://www.vldb2005.org/program/paper/thu/p553-stonebraker.pdf

	CONTENTS: ACADEMIC PRESENTATIONS
	FOSS GIS TOOLS and COMPONENTS
	Calculating NADCON Grids using GeoTools
	Multi-Environment General Purpose Applications Built with Terralib
	An Extensible, Interface-based, Open Source GIS Paradigm: MapWindow 6.0 Developer Tools for the Microsoft Windows Platform
	PAL - A Cartographic Labelling Library

	LAND CLASSIFICATION and CLIMATE CHANGE
	Using Airborne Laser Scanner Data and Open Source Software for a Glacier Inventory
	Open-source Versus Proprietary GIS on Landscape Metrics Calculation: A Case Study
	Urban Spatial Growth and Land use Change in Riyadh: Comparing Spectral Angle Mapping and Band Ratioing Techniques

	STANDARDS and INTEROPERABILITY
	The South African Address Standard and Initiatives towards an International Address Standard
	Can the South African Address Standard (SANS 1883) Work for Small Local Municipalities?
	Editing XML Metadata Files with the Aid of the Open-Source Editor MEE
	Multipurpose Metadata Management in gvSIG

	SOFTWARE ENGINEERING and GIS PRODUCTION
	Using Supply Chain Management to Enable GIS Units to Improve their Response to their Customers' Needs
	Factors Leading to Success or Abandonment of Open Source Commons: An Empirical Analysis of Sourceforge.net Projects
	Open Source Software: Risk Management from an Intellectual Property Perspective
	FOSS4G Certification Issues in the Development of a Large Telecommunication Application

	WATER RESOURCE MANAGEMENT
	Using Keyhole Markup Language to Create a Spatial Interface to South African Water Resource Data through Google Earth
	How Open Source GIS and Related Tools can Help in African Project and Projects can Help to Develop New Tools: The Case of Rwanda and the New GRASS-Epanet Interface
	Efficient Constrained Delaunay Triangulation Implementation in Java for SpatialHydrological Analysis

	DISASTER MANAGEMENT
	The Andean Information System for Disaster Prevention and Relief: A Case Study of Multi-National Open-Source SDI
	GIS: A Rapid Deployment GIS Framework for Humanitarian Relief Operations
	Natural Hazards and Risk Assessment: The FOSS4G Capabilities
	GIS-based Atmospheric Dispersion Modelling

	SPATIAL DATA
	MonetDB, A Novel Spatial Column-Store DBMS
	A Data Model for Efficient Address Data Representation – Lessons Learnt from the Intiendo Address Matching Tool
	A Comparison of Data File and Storage Configurations for Efficient Temporal Accessof Satellite Image Data
	Providing Access to Terabytes of Earth Observation Data in an International Organization - Infrastructure and Services

	MODELS, SIMULATIONS and RISK ASSESSMENT
	An Open Source Model for the Simulation of Granular Flows: First Results with GRASS GIS and Needs for Further Research
	Optimal Exploration Target Zones
	Quality Management for 3D/4D Meteorological Data with Paraview and GRASS GIS

	COLLABORATIVE GIS
	Development of Real-time Tracking and Log Management System using Free and Open Source Software
	Participatory Free and Open Source GIS in the Web 2.0 - Exploring Trends in GIS in Times of Collaborative Creation

	ENVIRONMENTAL MONITORING and WIRELESS NETWORKING
	GEM-PP: A GIS EMissions Pre-Processor to Ingest European Emission Inventory (EMEP/CORINAIR) into Photochemical Transport Models
	On-line Air Quality Monitoring and Warning Support System for Bucharest Urban Area
	NAMGIS – A Context-Aware Mobile Web GIS
	Assessment of Location Sensitivity of Voronoi-based Sensor Deployment and Reconfiguration using GIS

	HEALTH, NATURE CONSERVATION and BIODIVERSITY
	Free GIS Software meets Zoonotic Diseases: From Raw Data to Ecological Indicators
	Spatial Analysis and Visualization of Genetic Biodiversity
	Application of Open Source and Proprietary Software to Optimise Meadow Bird Management Schemes in the Netherlands

	SDI
	Beyond FOSS 3D GIS Technologies: A Chance for Developing Countries
	urbSAT: from Spatial SQL to Urban Indicators
	Implementation of the Elements of the Polish National Spatial Data Infrastructure based on Open Source Software
	A Review of the Status of Spatial Data Infrastructure Implementation in Africa

	EDUCATION AND TRAINING, FOSS in CORPORATES and GOVERNMENT
	Corporative Applications Built with TeCOM: A TerraLib Microsoft Visual Component
	Student Recruitment for Transformation at the University of Cape Town: A Spatial Analysis of the Alternative Admissions Research Project, 2000 – 2005
	The Challenges of GIS Education and Training: GIS use by Municipal Urban and Regional Planning
	Challenges Affecting the OSS Adoption Rate in the SA Government

	WEB SERVICES
	An Open Service Network for Geospatial Data Processing
	Integration of GRASS Functionality in Web based SDI Service Chains
	World Wide Access to Amazon Forest Inventories of Non-Timber Products
	Semantically Enabled SOS with Topic Maps

	SEARCH
	Welcome Addresses
	Review Process and Referees
	Organising Team
	Sponsors and Exhibitors
	Assistance / Help
	Disclaimer
	Exit

	page0: 193
	page1: 194
	page2: 195
	page3: 196
	page4: 197
	page5: 198
	page6: 199

