
Proceedings of the academic track of the 2008 Free and Open Source Software for Geospatial (FOSS4G) Conference,

incorporating the GISSA 2008 Conference
29 September - 3 October 2008, Cape Town, South Africa

ISBN 978-0-620-42117-1

SahanaGIS A Rapid Deployment GIS Framework
for Humanitarian Relief Operations

David Bitner1, Fran Boon2, Mifan Careem3, Gavin Treadgold4

1dbSpatial, Minneapolis, Minnesota, USA, bitner@dbspatial.com

2Oxfam, Oxford, UK, flavour@partyvibe.com
3Respere Lanka, Colombo, Sri Lanka, mifan@respere.com

4Kestrel Group, New Zealand, gt@kestrel.co.nz

Abstract

Sahana is a Free and Open Source Disaster Management system that began as a response to the
2005 Tsunami in Sri Lanka and has since been deployed in many disasters around the world. A
major requirement arising from these deployments has been the need for Geographical Information
Systems (GIS) capability, tightly integrated with the disaster management capability of Sahana. The
GIS capability should be easy enough to be configured by a normal volunteer, but at the same time
should be able to provide advanced capabilities normally associated with GIS.

As SahanaGIS is tightly integrated with the Sahana Disaster Management System, there are
some implications that apply to SahanaGIS that don't usually apply to conventional GIS – most of
them associated with the lack of time, personnel and resources during humanitarian relief
operations. SahanaGIS is designed and structured to mitigate these problems as much as possible:
it makes use of Open Standards, existing Free/Open Source GIS tools, access to a wide variety of
services and data-sources, distributed and reuse centric architectures, service oriented components
etc. as solutions to handle the issues associated with ad hoc disaster relief operations.

SahanaGIS provides the ideal platform to rapidly deploy a workable GIS solution to aid in
humanitarian operations: it also allows more advanced GIS capability to be integrated via
interoperability. This paper looks at the approach followed to build the framework and the
important design decisions in the framework architecture to cater to this specific domain. It looks at
some requirement scenarios that have directly influenced changes in the architecture, as well as the
solutions that were used to cater to it. It also looks at the importance of having reusable
components and the advantages of using F/OSS solutions. It provides a case for interoperability by
explaining the importance and advantages of using open standards and sharing data. It also looks
at the implications of being tightly integrated with a disaster management system.

1. GIS for Humanitarian Relief

Sahana (Sahana 2005) is a web based collaboration tool that addresses the common coordination
problems during a disaster from finding missing people, managing aid, managing volunteers,
tracking camps effectively between Government groups, the civil society (NGOs) and the victims
themselves. Since its first deployment in 2005 for the Asian Tsunami, the Sahana Disaster

Management System has been deployed and used in major natural disasters around the world,
ranging from China to the United States. The Sahana project gains valuable feedback and
requirements from these deployments, and nearly all these requirements consist of the need to have
some sort of GIS capability built into the system.

The usage of GIS in humanitarian relief operations is not a new concept, and the importance of
it, as well as the practical issues associated with it is well known and well documented (Currion et
al, 2006).However, with a visible increase in the number of natural disasters in recent times, usage
of Sahana to mange these has increased as well, making the need for good GIS capabilities in
Sahana that much more important.

SahanaGIS is a project within Sahana to build a GIS framework that can be used to rapidly
deploy GIS for humanitarian relief operations. Due to the time constraints associated with ad hoc
response operations, there usually is difficulty in obtaining quality spatial data of the region
concerned as well as difficulty in finding specialized GIS personnel. SahanaGIS attempts to solve
these problems, by building a flexible F/OSS GIS framework built on Open Standards.

2. Sahana Deployment Requirements for SahanaGIS

The Sahana Disaster Management System has been deployed in the aftermath of many disasters,
to help coordinate and manage disaster relief operations. These deployments have nearly always
been major case-studies for Sahana, where much insight is gained on how the system operates in
actual usage scenarios, how intuitive and usable it is, how flexible and scalable it is. Specific
requirements and feedback from users of the system have immensely helped Sahana to become
more practical and relevant to its domain.

The deployment map in Figure 1 shows the various Sahana deployment globally. The colored
regions of the map show thevarious locations that Sahana has been officially deployed and used at.
An official deployment here means a deployment that is done in collaboration with the Sahana
community, with preferably a notification on a Sahana mailing list, or with the approval of the
Sahana project management committee. Of these deployments, the regions in red are where GIS
capabilities of Sahana were used or where there were further GIS requirements as well. The regions
colored yellow were where Sahana was used without GIS capabilities.

Figure 1. Sahana deployment and GIS usage map

The usage of GIS capabilities at various levels in Sahana during a deployment, and the feedback
or additional requirements resulting from it, have influenced the design decisions of SahanaGIS. As
newer deployments take place, it is expected that SahanaGIS will continue to evolve based on
feedback obtained from them. Along with changes to the overall GIS architecture, some
deployments have required quick solutions to specific problems, which have had to be provided as
quick hacks in very short periods of time.

Following are described some of the requirements arising from historic deployments,
solutionsreached, and differences made to the overall architecture:

2.1. Sahana Shelter Management for New York City

Sahana was implemented in the city of New York in 2007, as a pre-deployment as part of its
Coastal Storm Plan. The system was customized for Mass Evacuation and Shelter Management
System, and was used to store information regarding 500+ shelters, 20000+ staff etc. The system
already consisted of many tabular reports. Addresses for all shelter locations were available in
separate spreadsheets already. A requirement was to also provide simple map-based reports of
shelter locations, to aid in decision making, and to provide users with the ability to enable/open
shelters from a map-based interface. The customizations were required to be completed in 2
months.

Due to the time constraints, it was decided to use Google Maps to provide map-based reports and
simple interfaces. The team made use of Google's geocoder to bulk geocode the shelter locations
via web services. A problem faced however was the long response time it took to geocode 500
entries: the Sahana web interface for geocoding usually took around 5-10 minutes to respond, which
disrupted flow. The team managed to reduce the response time by categorizing the 500+ shelter
addresses into the 5 New York boroughs, and allowing bulk geocoding by boroughs, thus reducing
the response time to nearly 1 minute.

2.2 Myanmar/Burma Sahana Deployment and OSM

Sahana was deployed for the Myanmar cyclone relief efforts in June 2008. There was a
requirement here to have up-to-date maps of the region, showing affected areas, and to use those
maps as data-sources withing Sahana. The existing data sources used in Sahana contained relatively
older maps, and thus some sort of collaboratively edited mapping sources were required.

The deployment efforts were handled by members from the Sahana community, the
OpenStreetMaps(OSM) community and the Myanmar IT professionals community. It was decided
to use a locally hosted version of OpenStreetMaps, edited by the local community to contain
updated data for the region. The idea was to selectively commit changes to the upstream
OpenStreetMaps servers periodically as well, thus ensuring that valuable new data from this
deployment was reflected in OpenStreetMaps as well. Usually, the latest stable version of Sahana is
used for deployments, since they have undergone rigorous testing and are thus more suitable for
usage than its unstable development counterpart. However, the GIS catalog functionality was only
available in the unstable Sahana trunk: this GIS component was merged with the stable version of
Sahana for use in the Myanmar deployment. The community obtained and setup a local OSM

server, which was then accessed by Sahana as Tile Mapping Service (TMS). The Sahana GIS
catalog at the time didn't handle TMS, so this feature was built in and committed to the Sahana code
base before being used for the deployment. The Myanmar IT Professionals community added new
data via GPS units to the local OSM server, which in turn was accessed via Sahana.

3. Design of GIS Functionality for Sahana

As a F/OSS project, SahanaGIS has the advantage of being designed, developed and reviewed by
a large community, consisting of humanitarian experts, GIS specialists, GIS developers, GIS users
and Sahana end users. Even though it might take slightly longer to reach community consensus for
design decisions, it pays off in the end since the solution turns out to be one that is approved by a
large group of people. The following are some of the SahanaGIS design goals for the current
architecture.

3.1 Design Goals of SahanaGIS

The following are some important design goals of Sahana.
− The GIS functionality of Sahana should be tightly integrated with Sahana
− SahanaGIS should be able to integrate and work with existing GIS infrastructures, data-

sources
− SahanaGIS shouldn't be limited to a few data-sources, but must allow users to select their

sources from a wide variety of options
− The GIS functionality of Sahana should be intuitive and easy to configure by normal users,

since this might be used a lot in humanitarian situation where specialist GIS users might not
be available.

− The GIS architecture of Sahana should promote distributed development
− The system should be built in such a way that changes in architecture due to newer

requirements or feedback resulting from deployments should be possible without too much
disruption in the flow of development

With these design goals in mind, the following decisions were taken as the GIS architecture
approach for Sahana

− SahanaGIS should be built as a distributed architecture of small reusable components that
serve each other – this would make the system more flexible and customizable, and would
help in the design of the section mentioned below.

− Each component would be standard-compliant based on Open Standards. Thus they can
collaborate with existing data-sources that adhere to standards as well. For instance, the
Sahana GIS catalog module uses the OGC standards (OGC, 1994) WMS, WFS to retrieve
spatial data sources: thus any data served as WMS, WFS can be accessed and viewed by
SahanaGIS.

− Each component should re-use from existing F/OSS solutions where possible: thus making
use of the global knowledge base of the F/OSS GIS community. SahanaGIS currently uses
F/OSS tools such as OpenLayers, UMN MapServer, Proj.4 etc. which provide the required
base functionality for SahanaGIS. This means that critical functionality required for

SahanaGIS is already available via many stable projects.
− Even though advanced GIS analysis capability would prove to be advantageous, it cannot

always be assumed that the required GIS infrastructure would be available during disaster
response - thus the system should be built for the lowest common denominator environment.
Sahana can be used with a wide variety of databases, ranging from SQLite to Oracle.
SahanaGIS is designed to maintain this database independence by storing spatial data as
simple floating point values instead of the OGC (OGC, 1994) formats: Well-Known-Binary
(WKB) or Well-Known-Text (WKT), thus ensuring that Sahana data can be used across
databases, regardless of whether they support GIS data storage formats or not.

− Sahana should contain an index of freely available spatial data-sources, and the
administrators of the system should have the ability to add new sources as required.

− SahanaGIS should provide mechanisms to efficiently publish or share its spatial data to be
used by external systems, as decided by the administrator of the system.

4. SahanaGIS Architecture

SahanaGIS is the generic term used to describe the GIS functionality of the Sahana DMS.
Sahana is a web-based application built using the LAMP (Linux-Apache-MySQL-PHP) stack. It
has a modular architecture, where components that perform specific functional tasks such as
capturing information regarding shelters etc., are built as modules which can be added or removed
as required. Sahana is built on top of the Sahana Application Framework (SAF), which is a PHP
framework built to host the Sahana Disaster Management System modules.

The Sahana Application Framework consists of APIs and libraries that provide technical
functionality to the Sahana modules. SahanaGIS consists ofcomponents of the Sahana Application
Framework, which consists of libraries and APIs that provide GIS functionality to the Sahana
modules (Careem et al, 2007), as well as modules that provide GIS functionality directly to end-
users.

The current SahanaGIS architecture (Sahana GIS, 2007), as depicted in Figure 2, consists of the
following components, based on the above goals and decisions.

Figure 2. Sahana GIS Architecture Diagram

Libraries and framework components:
− Map Viewer Client: This module provides a map viewer client which allows to view maps

from different sources. This is currently built using the OpenLayers Javascript library.
− Map Service Catalog: This is a generic GIS catalog module that provides administrators of

Sahana with an interface with an index of available spatial data-sources. Administrators
have the ability to add/edit data-sources, manage visibility of data-sources to end users etc.
As shown in the image below, the Map Service catalog currently handles WMS, GeoRSS
data sources, commercial APIs such as Google Maps, Microsoft Virtual Earth, Yahoo Maps,
Multimap, file layers such as KML, OSM. The objective of the Sahana GIS Catalog module
(Figure 3) is to make the management of spatial data-layers that much more easier and
provide users with as much choice as possible – this is part of SahanaGIS' design goal of
making the GIS functionality of Sahana more accessible and user-friendly to normal users -
which means that a fairly substantial GIS can be configured by someone with little or no
experience of GIS.

− GeoRSS Import/Export: This module provides Sahana with the ability to import GeoRSS
feeds from external sources, as well as export Sahana data as GeoRSS feeds. At deployment,
Sahana could contain a rich set of data regarding the disaster it is setup to manage: the
ability to share this data integrated with spatial data of the region would mean a rich set of
geographical data being served out to the GIS community in times of a disaster.

− Cascading Map Server: provides the ability to host spatial data from within Sahana by
making use of a mapping server such as UMN/Mapserver.

− Spatial Database: Spatial database such as PostGIS, which could be used for GIS Analysis

Figure 3. Sahana GIS Catalog Module

Applications:
− Situation Mapping: This is a Sahana module that allows users to collaboratively manage

situations by entering information and related media for specific points on visual maps.
− GPS Interface: This module allows GPS tracks and waypoints to be uploaded to and

downloaded from Sahana and GPS devices. The module uses F/OSS tools such as GPSd and
GPSBabel.

5. Conclusion

SahanaGIS is a rapidly developing GIS framework for disaster management that is adding to the
capabilities that have made Sahana an internationally recognized success. SahanaGIS builds upon a
foundation of experiences learned through deployments around the world. SahanaGIS builds upon
open standards allowing it to be integrated along side existing and complementary efforts.
SahanaGIS leverages existing work done throughout the F/OSS GIS world.

References

Careem, Bitner & De Silva 2007, 'GIS Integration in the Sahana Disaster Management System',

Proceedings of Internation Community on Information Systems on Crisis Response and Management 2007,
pp 211-218

Currion, Paul 2006, Better the Devil We Know: Obstacles and Opportunities in Humanitarian
GIS,Viewed 10 August 2008, <http://www.humanitarian.info/humanitarian-gis/>

OGC 1994, The Open Geospatial Consortium, Inc, viewed 10 August 2008,
<http://www.opengeospatial.org/>

Sahana Project 2005, The Sahana Project, viewed 10 August 2008, <http://sahana.lk/>
Sahana GIS Roadmap 2007, The Sahana Project, viewed 8 August

2008,<http://wiki.sahana.lk/doku.php?id=dev:gis_infra>

	CONTENTS: ACADEMIC PRESENTATIONS
	FOSS GIS TOOLS and COMPONENTS
	Calculating NADCON Grids using GeoTools
	Multi-Environment General Purpose Applications Built with Terralib
	An Extensible, Interface-based, Open Source GIS Paradigm: MapWindow 6.0 Developer Tools for the Microsoft Windows Platform
	PAL - A Cartographic Labelling Library

	LAND CLASSIFICATION and CLIMATE CHANGE
	Using Airborne Laser Scanner Data and Open Source Software for a Glacier Inventory
	Open-source Versus Proprietary GIS on Landscape Metrics Calculation: A Case Study
	Urban Spatial Growth and Land use Change in Riyadh: Comparing Spectral Angle Mapping and Band Ratioing Techniques

	STANDARDS and INTEROPERABILITY
	The South African Address Standard and Initiatives towards an International Address Standard
	Can the South African Address Standard (SANS 1883) Work for Small Local Municipalities?
	Editing XML Metadata Files with the Aid of the Open-Source Editor MEE
	Multipurpose Metadata Management in gvSIG

	SOFTWARE ENGINEERING and GIS PRODUCTION
	Using Supply Chain Management to Enable GIS Units to Improve their Response to their Customers' Needs
	Factors Leading to Success or Abandonment of Open Source Commons: An Empirical Analysis of Sourceforge.net Projects
	Open Source Software: Risk Management from an Intellectual Property Perspective
	FOSS4G Certification Issues in the Development of a Large Telecommunication Application

	WATER RESOURCE MANAGEMENT
	Using Keyhole Markup Language to Create a Spatial Interface to South African Water Resource Data through Google Earth
	How Open Source GIS and Related Tools can Help in African Project and Projects can Help to Develop New Tools: The Case of Rwanda and the New GRASS-Epanet Interface
	Efficient Constrained Delaunay Triangulation Implementation in Java for SpatialHydrological Analysis

	DISASTER MANAGEMENT
	The Andean Information System for Disaster Prevention and Relief: A Case Study of Multi-National Open-Source SDI
	GIS: A Rapid Deployment GIS Framework for Humanitarian Relief Operations
	Natural Hazards and Risk Assessment: The FOSS4G Capabilities
	GIS-based Atmospheric Dispersion Modelling

	SPATIAL DATA
	MonetDB, A Novel Spatial Column-Store DBMS
	A Data Model for Efficient Address Data Representation – Lessons Learnt from the Intiendo Address Matching Tool
	A Comparison of Data File and Storage Configurations for Efficient Temporal Accessof Satellite Image Data
	Providing Access to Terabytes of Earth Observation Data in an International Organization - Infrastructure and Services

	MODELS, SIMULATIONS and RISK ASSESSMENT
	An Open Source Model for the Simulation of Granular Flows: First Results with GRASS GIS and Needs for Further Research
	Optimal Exploration Target Zones
	Quality Management for 3D/4D Meteorological Data with Paraview and GRASS GIS

	COLLABORATIVE GIS
	Development of Real-time Tracking and Log Management System using Free and Open Source Software
	Participatory Free and Open Source GIS in the Web 2.0 - Exploring Trends in GIS in Times of Collaborative Creation

	ENVIRONMENTAL MONITORING and WIRELESS NETWORKING
	GEM-PP: A GIS EMissions Pre-Processor to Ingest European Emission Inventory (EMEP/CORINAIR) into Photochemical Transport Models
	On-line Air Quality Monitoring and Warning Support System for Bucharest Urban Area
	NAMGIS – A Context-Aware Mobile Web GIS
	Assessment of Location Sensitivity of Voronoi-based Sensor Deployment and Reconfiguration using GIS

	HEALTH, NATURE CONSERVATION and BIODIVERSITY
	Free GIS Software meets Zoonotic Diseases: From Raw Data to Ecological Indicators
	Spatial Analysis and Visualization of Genetic Biodiversity
	Application of Open Source and Proprietary Software to Optimise Meadow Bird Management Schemes in the Netherlands

	SDI
	Beyond FOSS 3D GIS Technologies: A Chance for Developing Countries
	urbSAT: from Spatial SQL to Urban Indicators
	Implementation of the Elements of the Polish National Spatial Data Infrastructure based on Open Source Software
	A Review of the Status of Spatial Data Infrastructure Implementation in Africa

	EDUCATION AND TRAINING, FOSS in CORPORATES and GOVERNMENT
	Corporative Applications Built with TeCOM: A TerraLib Microsoft Visual Component
	Student Recruitment for Transformation at the University of Cape Town: A Spatial Analysis of the Alternative Admissions Research Project, 2000 – 2005
	The Challenges of GIS Education and Training: GIS use by Municipal Urban and Regional Planning
	Challenges Affecting the OSS Adoption Rate in the SA Government

	WEB SERVICES
	An Open Service Network for Geospatial Data Processing
	Integration of GRASS Functionality in Web based SDI Service Chains
	World Wide Access to Amazon Forest Inventories of Non-Timber Products
	Semantically Enabled SOS with Topic Maps

	SEARCH
	Welcome Addresses
	Review Process and Referees
	Organising Team
	Sponsors and Exhibitors
	Assistance / Help
	Disclaimer
	Exit

	page0: 165
	page1: 166
	page2: 167
	page3: 168
	page4: 169
	page5: 170
	page6: 171

