
Proceedings of the academic track of the 2008 Free and Open Source Software for Geospatial (FOSS4G) Conference,

incorporating the GISSA 2008 Conference
29 September - 3 October 2008, Cape Town, South Africa

ISBN 978-0-620-42117-1

Semantically Enabled SOS with Topic Maps

Robert Barta, Thomas Bleier

Austrian Research Centers Seibersdorf
rho@devc.at, Thomas.Bleier@arcs.ac.at

Abstract
Sensor Web Sensor Web Enablement is a consistent standardization effort of the OGC (Open Geo

Consortium) to cope with an environment of pervasive sensor networks. Its ultimate goal is to
define web-based interfaces to integrate dispersed and technically disparate sensors into one
network, facilitating data aggregation for consolidated processing or user consumption.

As the webservice-oriented approach involves the exchange of XML documents encapsulating
sensor meta information and data itself, much of the programming effort revolves around creating
XML containers, filling them with content as mandated by the underlying XML schemas. If
implemented conventionally, sensor meta-data, configuration information and sensor data itself has
to be integrated (at least conceptually) before being funneled into the appropriate XML containers.
This implementation technique is not only error-prone, but also cumbersome given the large amount
of XML schemas to honor.

Here we report about a proof-of-concept implementation to replace a conventionally
programmed web service with a semantically-enabled one. For this we abandon any distinction
between data and meta data and model the whole information space as one semantic network,
specifically a topic map. Such maps consists of nodes (topics) carrying topical information,
together with appropriate names and addressing information. But the maps also include node
connections (associations) which reflect which and how various topics are connected.

Once pertinent information has been brought into this form, it is susceptible to be queried with a
Topic Maps query language (TMQL). That way not only the different storage details can be ignored,
TMQL can also directly generate XML content, relieving the implementor from this task.

1. Sensor Web Enablement (SWE)

During the last years the Open Geospatial Consortium (OGC) has developed a suite of standards
called Sensor Web Enablement (SWE). These deal with providing standardized access to sensors
and sensor related services using today's web technologies. The term sensor in this case is defined
very loose; basically everything that produces some values based on a stimulus is regarded a sensor.

The standard suite includes services for discovering sensors, tasking of sensors, providing alarms
and notifications derived from sensor data and, last but not least, for accessing the actual sensor
data. The service dedicated to this purpose is called Sensor Observation Service (SOS, [7]). The
Sensor Observation Service uses other standards like Observations & Measurements (O&M, [2])
and Sensor Model Language (SensorML, [1]) for the description of the sensor data or sensor
metadata.

mailto:rho@devc.at
mailto:Thomas.Bleier@arcs.ac.at

The Sensor Observation Service is defined as an implementation of an generic OGC web service.
As such it provides a set of methods or operations to its client, that allow them to discover the
contents offered by the service and to retrieve data from the service. The basic operations defined
for the Sensor Observation Service are:

• GetObservation for retrieving sensor data
• DescribeSensor for retrieving information about a specific sensor
• GetCapabilities for retrieving information about the data offered by the service

Requests of the latter kind are usually quite short

 <GetCapabilities service="SOS" updateSequence=""
 xmlns="http://www.opengis.net/sos/1.0"
 xmlns:ows="http://www.opengis.net/ows/1.1">
 <ows:AcceptVersions>
 <ows:Version>1.0.0</ows:Version>
 </ows:AcceptVersions>
 </GetCapabilities>

but the response document is massive:

 <sos:Capabilities version="1.0.0" updateSequence="2008-07-10T13:03:00+02"
 xsi:schemaLocation="http://www.opengis.net/sos/1.0

 <ows:ServiceIdentification xmlns:ogc="http://www.opengis.net/ogc"
 xmlns:ows="http://www.opengis.net/ows/1.1">
 <ows:Title>ARC Demo SOS</ows:Title>

 <ows:ServiceType codeSpace="http://opengeospatial.net">
 OGC:SOS
 </ows:ServiceType>

 ...
 </ows:ServiceIdentification>
 <ows:ServiceProvider xmlns:ows="http://www.opengis.net/ows/1.1">
 <ows:ProviderName>Austrian Research Centers</ows:ProviderName>
 ...
 </ows:ServiceProvider>
 <ows:OperationsMetadata xmlns:ogc="http://www.opengis.net/ogc"
 ...
 </ows:OperationsMetadata>
 <sos:Filter_Capabilities xmlns:ogc="http://www.opengis.net/ogc" ...>
 ...
 </sos:Filter_Capabilities>
 <sos:Contents>
 <sos:ObservationOfferingList>
 ...
 </sos:ObservationOfferingList>
 </sos:Contents>
 </sos:Capabilities>

The O&M specification defines a data model for the description of observations and

measurements received from a sensor. In addition, an XML application schema for encoding
observations in XML is provided.

http://www.opengis.net/sos/1.0
http://opengeospatial.net/

The most important properties of an observation according to the O&M specification are:
 the feature of interest for defining the target of the observation,
 the observed property, which is the phenomenon the observation is based on,
 the procedure, a description of the process to generate the result,
 the sampling time, which is the actual time where the result applies to the feature of interest,

 and
 the actual result, a value generated by the procedure.

A procedure description characterizes the process that is used to reach from the stimulus of the
sensor to the observation value. The Sensor Model Language is one of the specifications in the
SWE suite that can be used for that purpose. It not only provides a data model on its own, but also
an XML encoding to specify the creation of XML instance documents. Since the SWE suite in
general and the Sensor Observation Service in particular are meant to be applied in a very broad
range of application scenarios, SensorML contains a very generic set of components and data
submodels, which are packaged as SWE Common. Based on that, SensorML contains mechanisms
to describe various types of processes: physical processes, non-physical (e.g. mathematical)
processes, chained processes, etc.

Common elements for all those process definitions are:
 the input of the process
 the output of the process
 the parameters for the process

2. Traditional Implementation

An SOS server will have to wait for incoming HTTP requests. After parsing the XML message
and analyzing the request parameters a proper XML response will be constructed before being sent
to the requesting client.

The information necessary to draw up the response document ideally resides in a single,
consolidated database. Real-life scenarios, however, involve several data sources which typically
are only loosely related: configuration data for the service itself, listings of offerings together with
some meta data and general properties, administrative and contact information and then also the
sensor data itself.

It is the task of the implementor to first conceptually harmonize all sources by creating a data
model spanning over these sources and by identifying unique keys for all involved objects to secure
a consistent cross-reference between them. The SOS software has then to harvest the necessary
information from involved backends in order to organize it into the response XML instance.

To alluviate at least this last step, binding frameworks such as XML beans for Java can be used.
Still quite some complexity remains as the following typical workflow for creating a Capabilities
document shows.

The following lines are needed to create an empty capabilities document and to set the version:

CapabilitiesDocument xb_capsDoc = this.loadCapabilitiesSkeleton();
CapabilitiesBaseType xb_capBaseType = xb_capsDoc.getCapabilities();
CapabilitiesDocument xb_capsd = CapabilitiesDocument.Factory.newInstance();
Capabilities xb_caps = xb_capsd.addNewCapabilities();
xb_caps.setVersion(xb_capBaseType.getVersion());

To be able to fill the document with sensor offerings, first an empty (sub)document has to be

created, that will have to be filled with empty contents, from which we fetch a handle to the list of
offerings:

ContentsDocument xb_contentDoc = ContentsDocument.Factory.newInstance();
Contents xb_result = xb_contentDoc.addNewContents();
ObservationOfferingList xb_ooList =xb_result.addNewObservationOfferingList();

Only now we can iterate over the offerings which we get from some backend (below referred to

as dataManager):

Collection<DataOffering> offerings = dataManager.getOfferings();
for (DataOffering offering: offerings) {
 ObservationOfferingType xb_oo = xb_ooList.addNewObservationOffering();
 xb_oo.setId(offering.getId());
 BoundingShapeType xb_boundedBy = xb_oo.addNewBoundedBy();
 xb_boundedBy.addNewEnvelope();
 xb_boundedBy.setEnvelope(offering.getBoundingBox());
 CodeType xb_name = xb_oo.addNewName();
 xb_name.setStringValue(offering.getDisplayName());
 ...
}

The offering list document is then attached to the capabilities document:

Contents xb_contents = xb_caps.addNewContents();
xb_contents.set(xb_contentDoc);

Similar steps are repeated for all other relevant information, such as filter capabilities or service

meta data.
While binding frameworks for XML help to hide XML idiosyncracies and ensure the validity

against an underlying XML schema, they impose an intricate workflow onto the developer. And
because of the object-oriented nature of these frameworks, the workflow is not linear with the flow
of the generated document. Consequently this programming style results in numerous variables, all
with their own type, making maintenance a less sought-after activity.

3. Knowledge-Oriented Implementation

Like for the traditional case we assume here that the underlying data has been conceptually and
technically consolidated. Different to above, though, all information has been uplifted into a
semantic network form so that all concepts, types and all instance data are nodes in a semantic
network.

The application, in our case the SOS server, would approach such a network via an API, or better
with a fully-fledged query language. A naïve approach would use the query language to extract
relevant content to be injected into an XML structure as before. A more sophisticated alternative is
to let the query language do all the XML weight-lifting.

3.1 Topic Maps

Topic Maps (TM, [4]) is a knowledge representation technology quite comparable to the more
main-stream RDF/S framework [6]. While in the latter all information is couched in the form of
triples (subject, predicate, object), TM basic concepts are designed in a more anthropomorphic way:

Topics represent subjects, which can be anything, physical or not. To further knowledge
aggregation, topics can be enriched by various identifiers. In the case of objects which reside at
certain network locations, such identifiers will naturally be URLs. For a given SOS deployment its
endpoint can be used for identification:

 demo-sos isa SOS-deployment
 = http://env05.arcs.ac.at/SOSsrv/
 ! ARCS Demo SOS

In the notation above (AsTMa=, [8]) this is symbolized by prefixing a IRI with =. The local

identifier demo-sos is only local within the map.
As also shown in the example above, topics can have types, i.e. are instances of a class. That

itself is just another topics, to be defined in the map or by some environment ontology. And topics
can also have a number of names attached, in our case only one (signalled with !). Names can also
be typed to allow to use different names in different contexts, such as in

 arcs isa research-center
 ! acronym: ARCS
 ! Austrian Research Centers

Relationships between topics are expressed via associations, whereby every involved topic is a

player of a certain role. The fragment

 provisioning (provider: arcs, service: demo-sos)

means that arcs as provider provisions a service demo-sos. Obviously the whole association

itself is also of a certain type. The roles themselves (provider, service) are again topics to be
detailed somewhere to the extent necessary.

3.2 TM Query Language (TMQL)

Instead of using an API into a consolidated topic map, we leverage TMQL [3] because it not only
can detect and extract the required content; it can also organize it into XML.

Like any other query language TMQL has two objectives:
 locate and detect certain information in the queried TM database
 generate output based on the detected information

One familiar type of output is tabular and it can be requested using a SELECT-ish syntax:

 select $p / acronym, $s =
 where
 provisioning (provider: $p, service: $s)

A query processor will first try to find all associations which follow the pattern above, i.e. have

the required association type and the given roles. Once such an association is found, the variables
$p and $s will be bound to the players in the captured association.

On the outgoing side, $p and $s will be used in the SELECT clause to evaluate path expressions.
The $p / acronym would evaluate to all acronyms of the thing $p is bound to. The expression $s =
would return all subject addresses of the thing bound to $s. The overall result would be:

"ARCS" “http://env05.arcs.ac.at/SOSsrv/”

The query language is flexible enough to also generate XML output, not as string, but in an

internal representation, say as DOM. For this we have to switch into FLWR style (for, let, where,
return):

<services>{
 where
 provisioning (provider: $p, service: $s)
 return
 <service href="{$s =}">{$p / name}</service>
}</services>

While we have used the same WHERE clause as above and also bind the same variables to the

same topics, all this is now embedded in an XML template structure. The expected output would
then be

<services>
 <service href="http://env05.arcs.ac.at/SOSsrv/">ARCS</service>
</services>

3.3 SOS Response Generation

Equipped with a topic map we can now reimplement the SOS responder, whereby the plan is to
burden as much as possible onto TMQL's feature to generate XML content.

Once the responder has determined which kind of request (GetCapabilities, DescribeSensor, etc.)
has to be satisfied, it will launch a single TMQL query against the underlying topic map. For a
Capabilities request this looks like this (slightly trivialized, and using Perl):

use TM;
my $tm =;

use TM::QL;
my $query = new TM::QL (qq{return <sos:Capabilities .../>});
my $res = $query->eval ($tm);

In a first step the topic map is fetch from one (or more) backends. Then the query is compiled, so
that it can be evaluated directly afterwards. The only parameter for the evaluation is the map object.

On successful termination the result is an XML structure which can be serialized into a string:

print $res->toString;

Inside the XML query string, it is trivial to embed topic map information, such as the name of

the service provider:

 <ows:ProviderName>{$p / acronym || $p / name}</ows:ProviderName>

TMQL expressions can be used to deal with incomplete or highly data. Above, for instance, we

looked first for provider acronyms. If there were none, the query would fall back to the full name of
the provider (|| is the shortcircuit or in TMQL).

Naturally TMQL supports loops over repetitive items, so it is straightforward to include, say, a
list of offerings:

 <ows:Parameter name="offering">
 <ows:AllowedValues>{

 for $o in // offering return
 <ows:Value>{$o !}</ows:Value>

 }</ows:AllowedValues>
 </ows:Parameter>

The subexpression // offering will compute all instances of offering in the map, interestingly not

only direct ones, but also instances along any subclass hierarchy. If we were happy to get returned
short, internal identifiers for the offering topics, then the expression $o ! would just give us one.

4. Conclusions

The prototype was built merely with open source components. Mason (HTML::Mason on CPAN)
is a conventional, but robust web component framework. With it the request is parsed and it also
dispatches the appropriate component to serve the request. Perl TM (TM on CPAN) is used for both,
the map management and the query processor. Any logging is done with Log4Perl (Log::Log4Perl
on CPAN).

From an architectural viewpoint there are several interesting points:
• The fact that all objects are addressed the same way, namely as topics, has reduced the

development effort. The TMQL query expressions are exactly the boundary to be defined
how content is to be packaged into XML.

• All information, be it configuration or operational data has been brought into one
paradigm, that of Topic Maps. In a simple implementation such a map can be completely
human-authored. In larger deployments some data will be blended in from external
databases. This is achievable with wrappers which provide a topic-mappish view on the
content. This is the only place where such mapping and the provenance of the data
becomes visible. Should the implementation strategy change over time, the topic map

abstraction itself is not affected.
• Since TMs understand type hierarchies queries along this axis are much more robust

against reorganisation of the underlying database.
While maybe acceptable for a prototype, runtime performance is problematic, especially when it

comes to query larger maps. This is a problem area currently addressed, both from a theoretic angle
as well as implementation-wise.

On a notational frontier we consider to extend the Topic Maps notation to express time series
data and geospatial phenomena more naturally (similar to OWL Time[5]).

Also the virtualisation infrastructure is quite immature, making it necessary to write wrappers of
existing data sources manually, mostly from scratch. Here more work has to be invested to find a
more consistent methodology.

Bibliography

[1]. M. Botts and A. Robin. Sensor Model Language (SensorML), Open Geospatial Consortium Inc.,
OGC 07-000, 2007.

[2]. S. Cox. Observations and Measurements, Part 1 - Observation Schema, Open Geospatial Consortium
Inc., OGC 07-022r1, 2007.

[3]. L. M. Garshol and R. Barta. ISO 18048: Topic Maps Query Language (TMQL) - Committee draft,
2008.

[4]. L. M. Garshol and G. Moore. Topic Maps - Data Model, ISO 13250, iso/iec jtc1/sc34, information
technology, 2006.

[5]. J. R. Hobbs and F. Pan. Time ontology in OWL, W3C working draft 27 september 2006
[6]. G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts and Abstract Syntax,

W3C Recommendation 10 February 2004. W3C, 1993.
[7]. A. Na and M. Priest. Sensor Observation Service, Open Geospatial Consortium Inc., OGC 06-009r6,

2007.
[8]. R. Barta. AsTMa= language definition. 2004. Technical Report, http://astma.it.bond.edu.au/astma=-

spec-xtm.dbk.

	CONTENTS: ACADEMIC PRESENTATIONS
	FOSS GIS TOOLS and COMPONENTS
	Calculating NADCON Grids using GeoTools
	Multi-Environment General Purpose Applications Built with Terralib
	An Extensible, Interface-based, Open Source GIS Paradigm: MapWindow 6.0 Developer Tools for the Microsoft Windows Platform
	PAL - A Cartographic Labelling Library

	LAND CLASSIFICATION and CLIMATE CHANGE
	Using Airborne Laser Scanner Data and Open Source Software for a Glacier Inventory
	Open-source Versus Proprietary GIS on Landscape Metrics Calculation: A Case Study
	Urban Spatial Growth and Land use Change in Riyadh: Comparing Spectral Angle Mapping and Band Ratioing Techniques

	STANDARDS and INTEROPERABILITY
	The South African Address Standard and Initiatives towards an International Address Standard
	Can the South African Address Standard (SANS 1883) Work for Small Local Municipalities?
	Editing XML Metadata Files with the Aid of the Open-Source Editor MEE
	Multipurpose Metadata Management in gvSIG

	SOFTWARE ENGINEERING and GIS PRODUCTION
	Using Supply Chain Management to Enable GIS Units to Improve their Response to their Customers' Needs
	Factors Leading to Success or Abandonment of Open Source Commons: An Empirical Analysis of Sourceforge.net Projects
	Open Source Software: Risk Management from an Intellectual Property Perspective
	FOSS4G Certification Issues in the Development of a Large Telecommunication Application

	WATER RESOURCE MANAGEMENT
	Using Keyhole Markup Language to Create a Spatial Interface to South African Water Resource Data through Google Earth
	How Open Source GIS and Related Tools can Help in African Project and Projects can Help to Develop New Tools: The Case of Rwanda and the New GRASS-Epanet Interface
	Efficient Constrained Delaunay Triangulation Implementation in Java for SpatialHydrological Analysis

	DISASTER MANAGEMENT
	The Andean Information System for Disaster Prevention and Relief: A Case Study of Multi-National Open-Source SDI
	GIS: A Rapid Deployment GIS Framework for Humanitarian Relief Operations
	Natural Hazards and Risk Assessment: The FOSS4G Capabilities
	GIS-based Atmospheric Dispersion Modelling

	SPATIAL DATA
	MonetDB, A Novel Spatial Column-Store DBMS
	A Data Model for Efficient Address Data Representation – Lessons Learnt from the Intiendo Address Matching Tool
	A Comparison of Data File and Storage Configurations for Efficient Temporal Accessof Satellite Image Data
	Providing Access to Terabytes of Earth Observation Data in an International Organization - Infrastructure and Services

	MODELS, SIMULATIONS and RISK ASSESSMENT
	An Open Source Model for the Simulation of Granular Flows: First Results with GRASS GIS and Needs for Further Research
	Optimal Exploration Target Zones
	Quality Management for 3D/4D Meteorological Data with Paraview and GRASS GIS

	COLLABORATIVE GIS
	Development of Real-time Tracking and Log Management System using Free and Open Source Software
	Participatory Free and Open Source GIS in the Web 2.0 - Exploring Trends in GIS in Times of Collaborative Creation

	ENVIRONMENTAL MONITORING and WIRELESS NETWORKING
	GEM-PP: A GIS EMissions Pre-Processor to Ingest European Emission Inventory (EMEP/CORINAIR) into Photochemical Transport Models
	On-line Air Quality Monitoring and Warning Support System for Bucharest Urban Area
	NAMGIS – A Context-Aware Mobile Web GIS
	Assessment of Location Sensitivity of Voronoi-based Sensor Deployment and Reconfiguration using GIS

	HEALTH, NATURE CONSERVATION and BIODIVERSITY
	Free GIS Software meets Zoonotic Diseases: From Raw Data to Ecological Indicators
	Spatial Analysis and Visualization of Genetic Biodiversity
	Application of Open Source and Proprietary Software to Optimise Meadow Bird Management Schemes in the Netherlands

	SDI
	Beyond FOSS 3D GIS Technologies: A Chance for Developing Countries
	urbSAT: from Spatial SQL to Urban Indicators
	Implementation of the Elements of the Polish National Spatial Data Infrastructure based on Open Source Software
	A Review of the Status of Spatial Data Infrastructure Implementation in Africa

	EDUCATION AND TRAINING, FOSS in CORPORATES and GOVERNMENT
	Corporative Applications Built with TeCOM: A TerraLib Microsoft Visual Component
	Student Recruitment for Transformation at the University of Cape Town: A Spatial Analysis of the Alternative Admissions Research Project, 2000 – 2005
	The Challenges of GIS Education and Training: GIS use by Municipal Urban and Regional Planning
	Challenges Affecting the OSS Adoption Rate in the SA Government

	WEB SERVICES
	An Open Service Network for Geospatial Data Processing
	Integration of GRASS Functionality in Web based SDI Service Chains
	World Wide Access to Amazon Forest Inventories of Non-Timber Products
	Semantically Enabled SOS with Topic Maps

	SEARCH
	Welcome Addresses
	Review Process and Referees
	Organising Team
	Sponsors and Exhibitors
	Assistance / Help
	Disclaimer
	Exit

	page0: 439
	page1: 440
	page2: 441
	page3: 442
	page4: 443
	page5: 444
	page6: 445
	page7: 446

