
Proceedings of the academic track of the 2008 Free and Open Source Software for Geospatial (FOSS4G) Conference,

incorporating the GISSA 2008 Conference
29 September - 3 October 2008, Cape Town, South Africa

ISBN 978-0-620-42117-1

PAL - A Cartographic Labelling Library

Olivier Ertz1, Maxence Laurent2, Daniel Rappo1, Abson Sae-Tang1, Eric Taillard2

1IICT-SYSIN, University of Applied Sciences, Switzerland
2MIS-TIC, University of Applied Sciences, Switzerland

{olivier.ertz, maxence.laurent, daniel.rappo, abson.sae-tang, eric.taillard}@heig-vd.ch

Abstract
PAL is a ready-to-use library for cartographic label placement under free software license.

Developed at the University of Applied Sciences of Western Switzerland (HES-SO), it is the result of
combining experiences of three teams, in optimization algorithms, in GIS development and in
geomatic science and cartography.

Designed for multi-layers and real-time labelling of maps, it provides impressive results, both in
terms of execution time and solution quality, using combinational optimization approaches. Options
can be set for each layer to customize the labelling process. Options include: priority, in order to
decide which of two conflicting labels from different layers to display, the concept of obstacle in
order to avoid labels to be displayed above other features, the orientation preference to display
labels (free, horizontal, line, centroid,...).

All functionalities are embedded in a C++ library. A Java library is also available within a JNI
wrap to have the advantage of PAL in Java applications. This wrap has been implemented with
gvSIG through an extension, extJPAL. It demonstrates that it is possible to integrate the library into
any desktop or web application, written in Java or C. In the near future, PAL could be a good
alternative to be part of what is known as OSGeo Cartographic Library.

1. Introduction

Thanks to standards, geographical information systems are more and more interoperable, helping
the user to access easily to all data needed. Quantity of data to visualize in GIS applications is
growing, and it is thus more than ever important to have smart tools which can address the
problematic of label placement on documents like a map, avoiding overlapping problems and
maximizing the number of displayed labels.

PAL is the French acronym for "Automated Placement of Labels". The project aims at providing
effective and configurable meta-heuristic algorithms for real time labelling of maps. It is developed
at the University of Applied Sciences of Western Switzerland (HES-SO) combining experiences of
three teams. MIS-TIC, a team specialized in optimization algorithms for very large problems is in
charge of the computational part of the project. IICT-SYSIN, active in Web and GIS development,
is focusing on the integration of PAL algorithms into GIS softwares. G2C team, specialized in
geomatic science and cartography, provides the knowhow for labelling rules.

mailto:maxence.laurent@heig-vd.ch

2. PAL Features and Functionalities
PAL is designed for multi-layers labelling. It handles layers of points, lines or polygons. Each

layer has properties that influence the labelling process: (I) a scale range for which the layer will be
labelled, (II) a priority, in order to decide which of two conflicting labels from different layers to
display, (III) a concept of obstacle in order to avoid labels to be displayed above other features, (IV)
an activity status (is the layer currently displayed ?), (V) a “toLabel” status (“is the layer to be
labelled ?”), (VI) the orientation preference to display labels (free, horizontal, line, centroid, ...). All
functionalities are embedded into a C++ library. A Java library is also available within a JNI wrap.

PAL has only to know the size of each features' label. Two kinds of units are handled for label
size: pixel (label has the same size on screen whatever the scale is) or map unit (the label size varies
while zooming in or out). For PAL, labels are abstract bounding box, so everything which has to be
placed can be handled.

2.1 Labelling example with PAL

Figures 1 and 2 below clearly illustrate the common situation of cartographers wanting to display
a maximum of labels on a map so to identify objects at a glance. These figures are representations
of a small part of Blo03 data (see computational section below) with polygons representing
buildings and parcels, and lines representing fresh and used water conducts (scale : 1/1000).

Figure 2. Blo02-3 Polygons

Figure 1. Blo03-4 Polygons, lines, points

3. How Does PAL Work ?

3.1 Algorithms
The labelling process has two phases: problem generation and optimization. Problem generation

answers the question : Where are the best candidate positions to put a label for a given geometry
(either a point or a line or a polygon feature) ? This phase returns a set of candidate label positions
for each object and a conflict graph. The nodes of this graph are the label candidate and an edge
links two candidates if they cannot be displayed simultaneously.

The optimization phase is to choose which of the candidate label should actually be displayed on
the map. The choice of retaining a candidate takes into account position quality, layer priority and
conflict graph. Thus, the optimization phase can be done independently of feature type.

3.2 Problem Generation Phase

The problem generation phase is composed of 2 main steps: Candidate generation and candidate
filtering. Candidate generation takes into account the list of objects to label (practically stored into
layers), a list of obstacles, a scale and a map extent. Three conditions must be satisfied for an object
to be part of the problem. (I) its layer is active (meaning that it has to be displayed), (II) the scale is
in the layer's scale range, (III) the object is completely or partially on the map extent.
For each objects to label, a large number of candidate label positions are first generated and a cost is
associated to each candidate. The cost of a candidate depends on its cartographic preference and on
the fact that it covers an obstacle or not. Then, candidate filtering selects only few of the candidates
with smallest costs. The number of candidates retained for each object depends on its geometry.

Candidates Generation
Point feature : exactly p candidates are generated, where p is a parameter. The best candidate is

located upper-right of the point and has a cost of 0.0001. Others candidates are uniformly arranged
around the point, the worst is located bottom-left and its cost is 0.0021. The distance distlabel
between candidates and the point can be specified. It is generally equal to the symbol radius.

Line feature : two different ways are provided to arrange labels. The first, P_LINE, puts
candidates above the line, the second, P_LINE_AROUND, puts labels on both sides of the line.
With the latter, the distance distlabel between candidates and the line can be defined. The number of
candidates depends on the line's length. If the line is shorter than the label, only one candidate (or
two with P_LINE_AROUND) centred on the line is generated. Otherwise, candidates are regularly
spread along the line. The number of candidates generated depends on the line length.
The orientation of a candidate is parallel to a straight segment linking two points of the line, with
the length of the line portion connecting these point being equal to the length of the label. If the
ratio between the label length and the distance from one point to the other is higher than 0.98, then
the candidate cost is 0.0001. Otherwise, the candidate cost is set to 10–2·(1 - label length / line
length).

Polygon feature : four ways are provided to arrange candidates: P_POINT uses polygon's
centroid as a point (see the point feature section); P_LINE uses polygon's perimeter as a line (see
the line feature section); P_FREE arranges candidates at best inside the polygon, rotations are
allowed; P_HORIZ is the same as P_FREE, but force all candidates to be horizontal.

First of all, it is checked whether the polygon is convex1 or not. A non-convex polygon is split
into several convex polygons. The candidate positions for a convex polygon are defined as follows.
First, a rectangle of minimal area embedding the polygon is determined. Then, this rectangle is
filled with candidates. In P_FREE mode, candidates are parallel to rectangle borders, in P_HORIZ
mode, candidates are horizontal. The cost of a candidate is inversely proportional to its distance to

1 . Actually, a polygon is considered as convex if the area of its convex hull is less than twice the label area.

the polygon's border or hole, or to the distance to an obstacle.
Candidates Filtering
Candidates generation generally produces too much candidate labels. So, only candidates having

potential to lead to good solution are preserved. A first filter stage discourages the use of candidates
locating over obstacles. A second filter stage selects for each object the p candidates having the
lowest cost. A third filter stage, in the spirit of rule L1 (Wagner et al, 2001), removes all candidates
of a given object that are worse than a candidate of this object having no overlap with candidates of
any other objects. This filter stage is recursively applied until no improvements can be obtained.

3.3 Optimization Phase

The problem generation phase provides a list of n objects to label and, for each object, a list of
candidate label positions. Each candidate has a geographical cost (stored in the vector costs), and a
list of other conflicting candidates. Two conflicting candidates cannot be displayed at the same time
on the map. Each object i ,i�{0... n} has a special cost inactiveCosts[i] used when the object is not
labelled; this cost depends on layer's priority and is between 1 and 10. A solution to the problem is a
list of conflict free labels to display. A solution can be represented by a vector sol, of size n, with he
ith component indicating which candidate is displayed for object i. Value –1 indicates that the object
is not labelled. The labelling problem can be stated as finding a solution sol without overlaps
minimizing the expression given by Formula 1.

Initial solution

 [1]

An initial solution is first built along the lines of the first step of FALP algorithm (Yamamoto et
al, 2005): (I) Put every candidates into a set s, (II) select the candidate c from s which has the
smallest number of overlaps and put it into the solution, (III) remove from s all candidates which
overlap with c, as well as other candidates of c's object and update number of overlaps for
remaining candidates in s. (IV) Go back to (II) until s is empty.

Solution Improvement Techniques
Three techniques chain, pop_chain and pop_tabu_chain are available in the software for

improving the initial solution. Moreover, pop_tabu (Alvim et al, 2008), one of the best technique
available today for point feature label placement is also considered in the numerical experiments
that follow. This technique is based on the generic POPMUSIC optimization frame (Taillard et al,
2001) and works on a slightly different version of the problem where all objects must be labelled,
but with a cost (comprised between 1 and 10 depending on layer's priority) for each label overlap. It
embeds a tabu search method (Glover et al, 1997) that works with a very simple neighbourhood
consisting of iteratively changing the label candidate retained for one object at a time.

Chained neighbourhood (chain)
The chained neighbourhood works as follows. An object is selected and its label is modified in

the current solution. If the object was not labelled, then the best candidate for this object is selected
(even if it creates one or more overlaps); if the object was already labelled, then the best among all

other candidates for this object is selected. At this point, several possibilities may occur:
1) The solution obtained is better than the current solution, then it becomes the current solution
and the process is repeated from there
2) The solution obtained has exactly one overlap (that involves the label just modified and the
label of another object). In this case, the label of the other object is modified (if possible) and the
process recursively continues from there
3) The solution obtained has more than one overlap or exactly one overlap but there is no other
possibility to label the other object. In this case, the overlapping labels are not displayed any more
(thus leading to a solution with inactive costs) and the chain of modifications stops.

The chain modifications is also stopped if the number of modifications is higher than a given
limit or if the label to modify is those of an object already modified in the chain. Once the chain is
stopped, the best solution visited along the chain becomes the current solution and the process is
repeated while the solution is improved.

POPMUSIC with chain (pop_chain)
The basic idea of POPMUSIC is to locally optimize sub-parts of a solution, once a valid solution

to the problem is available. When these local optimizations are made with the chain method
presented above, the technique is called pop_chain. Here, a chain is initiated by modifying the label
of one object after the other. If a chain contains a valid and improving solution, the last is retained
and the process is iterated. The process is stopped when all objects have initiated a rejected chain.

POPMUSIC with tabu search and chained neighbourhood (pop_tabu_chain)
The idea behind tabu search frame is to iteratively perform local modifications to the solution,

even if the solution so obtained is worse than the starting solution. In order to avoid to visit
cyclically the same subset of solutions, the reverse of a modification is forbidden (made tabu) for
few iterations. At each tabu search iteration, several modifications are evaluated and the best non-
tabu is selected and performed. The new technique pop_tabu_chain is a POPMUSIC that embeds a
tabu search with a neighbourhood based on chained modifications as optimization process.

4. Computational Experiments

The techniques presented above are programmed in C++ and run on Gentoo GNU/Linux 2.6.23
with 2.2 Ghz Intel Core2 Duo processor (only one core used at a time by the algorithm). They have
been tested on academic problem instances (Wagner et al, 2001) (HardGrid and RandomRect:
objects are points and have exactly four candidates per point) and real data containing two layers of
polygons, one layer of lines and one layer of points (Blo01, Blo02, Blo03). Table 1 provides the
geographical characteristics of the real instances while Table 2 provides the characteristics of the
instances obtained by the problem generation phase, depending on the obstacle layers chosen by the
user. These characteristics are the number of label candidates, the number of conflicts between
candidates and the computational time required by this phase.

Figure 3 compares the performances (computational time and percentage of objects labelled) of
the four techniques on HardGrid and RandomRect instances. It can be seen that chain provides
moderately good solutions very rapidly. The solutions produced by this technique are sufficiently

good and look pretty for interactive mappings. The new methods pop_chain and pop_tabu_chain
are able to find better or significantly better solutions than pop_tabu, at the expense of a higher
computational effort. Figure 3 shows that computational effort grows quasi linearly with the number
of objects to label. The last columns of Table 2 provides the computational times and percentage of
objects labelled for the new optimization techniques presented in this article.

Figure 3. HardGrid and RandomRect problems: time and percent displayed

Name Scale Area [km²] Map size [cm] # points # lines # polygons # objects
Blo01 1:6000 0.478380 15.7x8.5 149 398 513 1060

Blo02 1:1000 0.055952 26.9x20.8 90 264 276 630

Blo03 1:5000 45.813726 171.8x106.7 1,182 2901 5,171 9254
Table 1. Main characteristics of real problems

Problem

obstacle
layers

candida

tes

conflicts
Time

gen. [s]
Time

chain
%

chain

Time
pop_ch

ain

%
pop_cha

in

Time
pop_tabu

_chain

%
pop_tabu_

chain
Blo01 0 5,490 236,387 0.31 0.23 30.28 10.42 30.85 17.64 31.04

Blo01 1 3,275 76,189 0.25 0.08 28.21 5.07 28.77 10.01 28.68

Blo01 3 2,611 49,301 0.23 0.06 25.75 3.20 26.32 7.11 26.04

Blo01 4 2,529 47,544 0.23 0.05 26.04 3.04 26.04 7.19 26.42

Blo02 0 5,028 48,458 0.39 0.18 67.62 5.64 67.62 6.77 68.41

Blo02 1 2,289 10,773 0.62 0.03 63.81 1.44 63.65 2.61 64.13

Blo02 3 2,129 8,317 0.60 0.03 62.22 1.23 62.70 2.15 63.65

Blo02 4 2,007 7,809 0.60 0.02 62.86 1.11 63.17 1.82 63.65

Blo03 0 54,558 1,466,745 12.43 2.77 46.71 79.13 47.62 110.19 47.24

Blo03 1 37,562 576,017 13.83 1.4 45.70 51.23 46.57 74.91 46.27

Blo03 3 30,666 359,779 13.83 0.92 43.32 34.15 44.28 58.07 44.16

Blo03 4 29,945 345,764 13.80 0.92 43.18 32.73 44.05 54.86 43.79

Table 2. Instance characteristics and efficiency of techniques proposed in this article

5. Integration of PAL Into GIS Desktop
Currently, default labelling functionalities provided by GIS softwares, FOSS and non-FOSS, are

generally basic without a candidates generation. So, labels can only be placed on polygon centroid
(sometimes label is even displayed outside the polygon to label), on line end or middle of line.

Thus, labelling possibilities are significantly restricted and so is the map legibility. A main
drawback is that labels are greedily placed. They are just displayed one after the other if there is no
overlapping, so that the first one has more chance to appear than the last one. To perform advanced
labelling, one has often to acquire a specific extension.

Even if labelling is less a GIS functionality than a cartographic tool, there are two important
dimensions that any labelling module has to take into account : the algorithmic aspects and the GUI
(Graphical User Interface). The first one has to conciliate efficiency and solution quality to place
intelligently in near real-time a maximum of labels, so as to produce a legible map. The second one
must provide good interactivity for the user to complete his work at best. Providing a saving time
rich user interface to customize label placement is an important aspect, but the PAL project does not
focus on this second dimension.

For 40 years, many research projects have been lead on automated labels placement and describe
algorithms providing better results than the greedy approaches. Best of them provide impressive
results, both in terms of execution time and solution quality, using combinational optimization
approaches (Edmonson et al, 1997), as PAL does.

Translating the power of these algorithms can be discouraging because of their complexity.
Therefore, by combining three specialized teams, this project was able to provide a ready-to-use
C++ library for automated placement of labels.

5.1 Towards PAL As A Labelling Library for FOSS4G Applications
To prove usability of the PAL library, it is necessary to build a graphical user interface on this

“brick of intelligence” to drive it. It appeared clear that an integration into a well-known GIS
application would be better for the long term life of the project. As FOSS has priority, among many
existing applications (OpenJUMP, gvSIG, uDig, ...), it was decided to use gvSIG (Generalitat
Valenciana 2008) to create an extension for label placement based on PAL library due to experience
acquired through other previous projects. Notice that gvSIG is written in Java, so it was first
necessary to create a C-Java bridge to be able to use PAL from Java source code.

5.2 JPAL, A Java Bridge for PAL

With JNI (Java Native Interface) framework, it is possible to call from a Java program some non-
Java native source code and reversely. For PAL, the native source code is written in C/C++.
Therefore, PAL library (pal.dll, pal.so) has been wrapped with the addition of some classes that
assume the gateway when calling a « cross-language » method. Following this guideline, JPAL has
been created. It is a Java library encapsulating the PAL library and these JNI specific classes, so that
it is quite easy for a Java developer to use PAL functionnalities.

Figure 5. extJPAL control panel Figure 4. JPAL=JNI+PAL

5.3 extJPAL: A PAL Extension for gvSIG
gvSIG is built on a framework providing a plugin system so that it is possible to add new

functionalities without modifying core source code. Following this architecture, extJPAL is an
extension for gvSIG 1.1.x enabling some new functionalities of labelling based on PAL. Yet, the
extension has reached the beta testing phase. It exposes almost all functionalities from PAL library
and fill the initial purpose to demonstrate its use in real situations of use.

Finally, in term of execution time, it is important to take into account time due to the JNI
wrapping, but also the efficiency of the GIS software itself, for rendering and event management.
Moreover, to connect gvSIG with JPAL, the system must also calculate the bounding box of each

label by considering the chosen font name and size. The extension receives back placement results
to create and render the text layer. This chain of actions takes only few seconds to label a map with
four important layers at the same time. It demonstrates that the extension fits for use during
navigation (zoom and pan).

6. Conclusion

More than just a description of new algorithms, PAL is a ready-to-use library for cartographic
label placement under free software license. Source code is available through a SVN repository. The
same goes for the extJPAL extension available through the gvSIG extension community repository
(gvSIG team 2008). One can get there installation instructions, project status and links to source
code and binaries. Moreover, the project provides a bug reporting tool.

Many improvements could still be lead : considering line width in obstacle detection, allowing
on-the-fly projection changes, directly accessing and releasing spatial entities (with callbacks
registering), forcing label positions, improving candidate generation for polygon, etc.

Implementing PAL into a gvSIG extension demonstrates that it is possible to integrate it into any
other desktop or web application. Also, in the near future, one can imagine that PAL could be a
good alternative to be part of what is known as OSGeo Cartographic Library (Neteler 2008).

For more informations, go to http://geosysin.iict.ch (IICT-SYSIN 2008).

7. Acknowledgements
The authors wish to thank Adriana C. F. Alvim who provided code for the point feature label

placement, Patrick Bailly who has developed functions for measuring the quality of candidate label
positions, Francis Grin and Sébastien Roh who provided real datasets for computational tests and
shared their experience and comments in map production.

8. References

Alvim, A.C.F., Taillard, E., (2008), POPMUSIC for the point feature label placement, European J. Oper.
Res., To appear.

Edmondson, S., Christensen, J., Marks, J., & Shieber, S, 1997, 'A General Cartographic Labeling
Algorithm', Cartographica, vol. 33, no. 4, pp. 13-23.

Generalitat Valenciana 2008, gvSIG project, Valencia, Spain, viewed 15 August 2008,
<http://www.gvsig.gva.es>.

Glover, F., Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Dordrecht, The Netherlands
gvSIG team 2008, gvSIG extensions repository, Valencia, Spain, viewed 15 August 2008,

<https://gvsig.org/plugins/downloads>.
IICT-SYSIN 2008, PAL Project, Yverdon-les-Bains, Switzerland, viewed 15 August 2008,

<http://geosysin.iict.ch/PAL>.
Neteler, M., OSGeo Cartographic Library, Open Source Geospatial Foundation Wiki, viewed 15 August

2008, <http://wiki.osgeo.org/wiki/OSGeo_Cartographic_Library>.
Taillard, E., Voss, S. (2001), 'POPMUSIC: Partial Optimization Metaheuristic Under Special

Intensification Conditions', in Ribeiro, C. and Hansen, P. (eds.), Essays and surveys in metaheuristics,

Kluwer Academic Publishers, Boston, USA, pp. 613–629.
Wagner, F., Wolff, A., Kapoor, V., Strijk, T. (2001), 'Three rules suffice for good label placement',

Algorithmica, vol. 30, pp. 334–349.
Yamamoto, M., Camara, G. and Lorena, L.A.N. (2005), Fast Point-Feature Label Placement Algorithm

for Real Time Screen Maps, VII Brazilian Symposium on GeoInformatics (GeoInfo 2005).

	CONTENTS: ACADEMIC PRESENTATIONS
	FOSS GIS TOOLS and COMPONENTS
	Calculating NADCON Grids using GeoTools
	Multi-Environment General Purpose Applications Built with Terralib
	An Extensible, Interface-based, Open Source GIS Paradigm: MapWindow 6.0 Developer Tools for the Microsoft Windows Platform
	PAL - A Cartographic Labelling Library

	LAND CLASSIFICATION and CLIMATE CHANGE
	Using Airborne Laser Scanner Data and Open Source Software for a Glacier Inventory
	Open-source Versus Proprietary GIS on Landscape Metrics Calculation: A Case Study
	Urban Spatial Growth and Land use Change in Riyadh: Comparing Spectral Angle Mapping and Band Ratioing Techniques

	STANDARDS and INTEROPERABILITY
	The South African Address Standard and Initiatives towards an International Address Standard
	Can the South African Address Standard (SANS 1883) Work for Small Local Municipalities?
	Editing XML Metadata Files with the Aid of the Open-Source Editor MEE
	Multipurpose Metadata Management in gvSIG

	SOFTWARE ENGINEERING and GIS PRODUCTION
	Using Supply Chain Management to Enable GIS Units to Improve their Response to their Customers' Needs
	Factors Leading to Success or Abandonment of Open Source Commons: An Empirical Analysis of Sourceforge.net Projects
	Open Source Software: Risk Management from an Intellectual Property Perspective
	FOSS4G Certification Issues in the Development of a Large Telecommunication Application

	WATER RESOURCE MANAGEMENT
	Using Keyhole Markup Language to Create a Spatial Interface to South African Water Resource Data through Google Earth
	How Open Source GIS and Related Tools can Help in African Project and Projects can Help to Develop New Tools: The Case of Rwanda and the New GRASS-Epanet Interface
	Efficient Constrained Delaunay Triangulation Implementation in Java for SpatialHydrological Analysis

	DISASTER MANAGEMENT
	The Andean Information System for Disaster Prevention and Relief: A Case Study of Multi-National Open-Source SDI
	GIS: A Rapid Deployment GIS Framework for Humanitarian Relief Operations
	Natural Hazards and Risk Assessment: The FOSS4G Capabilities
	GIS-based Atmospheric Dispersion Modelling

	SPATIAL DATA
	MonetDB, A Novel Spatial Column-Store DBMS
	A Data Model for Efficient Address Data Representation – Lessons Learnt from the Intiendo Address Matching Tool
	A Comparison of Data File and Storage Configurations for Efficient Temporal Accessof Satellite Image Data
	Providing Access to Terabytes of Earth Observation Data in an International Organization - Infrastructure and Services

	MODELS, SIMULATIONS and RISK ASSESSMENT
	An Open Source Model for the Simulation of Granular Flows: First Results with GRASS GIS and Needs for Further Research
	Optimal Exploration Target Zones
	Quality Management for 3D/4D Meteorological Data with Paraview and GRASS GIS

	COLLABORATIVE GIS
	Development of Real-time Tracking and Log Management System using Free and Open Source Software
	Participatory Free and Open Source GIS in the Web 2.0 - Exploring Trends in GIS in Times of Collaborative Creation

	ENVIRONMENTAL MONITORING and WIRELESS NETWORKING
	GEM-PP: A GIS EMissions Pre-Processor to Ingest European Emission Inventory (EMEP/CORINAIR) into Photochemical Transport Models
	On-line Air Quality Monitoring and Warning Support System for Bucharest Urban Area
	NAMGIS – A Context-Aware Mobile Web GIS
	Assessment of Location Sensitivity of Voronoi-based Sensor Deployment and Reconfiguration using GIS

	HEALTH, NATURE CONSERVATION and BIODIVERSITY
	Free GIS Software meets Zoonotic Diseases: From Raw Data to Ecological Indicators
	Spatial Analysis and Visualization of Genetic Biodiversity
	Application of Open Source and Proprietary Software to Optimise Meadow Bird Management Schemes in the Netherlands

	SDI
	Beyond FOSS 3D GIS Technologies: A Chance for Developing Countries
	urbSAT: from Spatial SQL to Urban Indicators
	Implementation of the Elements of the Polish National Spatial Data Infrastructure based on Open Source Software
	A Review of the Status of Spatial Data Infrastructure Implementation in Africa

	EDUCATION AND TRAINING, FOSS in CORPORATES and GOVERNMENT
	Corporative Applications Built with TeCOM: A TerraLib Microsoft Visual Component
	Student Recruitment for Transformation at the University of Cape Town: A Spatial Analysis of the Alternative Admissions Research Project, 2000 – 2005
	The Challenges of GIS Education and Training: GIS use by Municipal Urban and Regional Planning
	Challenges Affecting the OSS Adoption Rate in the SA Government

	WEB SERVICES
	An Open Service Network for Geospatial Data Processing
	Integration of GRASS Functionality in Web based SDI Service Chains
	World Wide Access to Amazon Forest Inventories of Non-Timber Products
	Semantically Enabled SOS with Topic Maps

	SEARCH
	Welcome Addresses
	Review Process and Referees
	Organising Team
	Sponsors and Exhibitors
	Assistance / Help
	Disclaimer
	Exit

	page0: 23
	page1: 24
	page2: 25
	page3: 26
	page4: 27
	page5: 28
	page6: 29
	page7: 30
	page8: 31
	page9: 32

